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Abstract. Properties of the discrete Dirac–Coulomb Sturmian functions, invented recently by the
author, have been investigated in the limitZ→ 0, whereZ is a nuclear charge. Limiting forms of
differential equations as well as orthogonality and closure relations obeyed by the Sturmians have
been obtained. A Sturmian expansion of the radial Dirac Green function for|E| < mc2 and two
Sturmian expansions of the Dirac plane wave have been derived.

1. Introduction

In recent publications [1–3] we have described methods of constructing discrete [1, 3] and
continuous [2] Sturmian basis sets for the first-order Dirac–Coulomb problem and discussed
some properties of these functions. In [1] we have presented exemplary applications of the
discrete Dirac–Coulomb Sturmians and expressed our belief in the wider range of utility of
these functions. In this work we support this conviction showing further applications of the
discrete relativistic Sturmian basis sets.

The paper is divided into six sections. After this introduction, in section 2 we summarize
these properties of the radial Dirac–Coulomb Sturmians withZ 6= 0, whereZ is the nuclear
charge, which will be useful in later parts of the work. In section 3 we investigate the Dirac–
Coulomb Sturmians in the limitZ → 0 (the dependence of the relativistic Sturmians onZ

is a feature distinguishing these functions from their non-relativistic counterparts [4] which
areZ-independent). In section 4 we present an exemplary application of the limiting Dirac–
Coulomb Sturmians and derive a series expansion of the radial Dirac Green function in the case
|E| < mc2. Two Dirac–Coulomb Sturmian expansions of the Dirac plane wave, analogous to
the Schr̈odinger–Coulomb Sturmian expansion of the Helmholtz plane wave [5, 6], are derived
in section 5. Remarks concluding the paper constitute section 6.

2. The radial Dirac–Coulomb Sturmians forZ 6 = 0

The radial Dirac–Coulomb Sturmian functions{Snκ(ε,2λr)} and {Tnκ(ε,2λr)} are defined
[1] as non-trivial solutions to the Sturm–Liouville system consisting of the set of coupled
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first-order differential equations(
mc2 − E − µnκ(ε)Ze2/r ch̄(−d/dr + κ/r)

ch̄(d/dr + κ/r) −mc2 − E − µ−1
nκ (ε)Ze

2/r

)(
Snκ(ε,2λr)
Tnκ(ε,2λr)

)
= 0

(0< r <∞) (1)

augmented by the following boundary conditions imposed at the singular end points:

Snκ(ε,2λr) and Tnκ(ε,2λr) bounded for r → 0 and r →∞. (2)

In equation (1)µnκ(ε) is an eigenvalue parameter for the problem,m ande are the electron rest
mass and the absolute value of the electronic charge, respectively,c is the speed of light, ¯h is
the reduced Planck constant,κ is a non-zero integer, whileE andZ are fixed real parameters
such that

06 |E| < mc2 0< α|Z| < 1 (3)

whereα = e2/ch̄ is the Sommerfeld fine-structure constant. For the sake of convenience, the
argument of the Sturmians has been chosen as 2λr, where

λ =
√
(mc2 − E)(mc2 +E)

ch̄
(4)

rather thanr. The notation used in this work emphasizes that the Sturmians depend on the
energy parameterE not only throughλ but also through the parameter

ε =
√
mc2 − E
mc2 +E

. (5)

It is convenient to change the independent variable fromr to

ρ = 2λr (6)

and to introduce a parameter

ζ = αZ. (7)

With these changes, the eigenvalue problem constituted by equations (1) and (2) takes the form(
ε/2− µnκ(ε) ζ/ρ −d/dρ + κ/ρ

d/dρ + κ/ρ −ε−1/2− µ−1
nκ (ε) ζ/ρ

)(
Snκ(ε, ρ)

Tnκ(ε, ρ)

)
= 0

(0< ρ <∞) (8)

Snκ(ε, ρ) and Tnκ(ε, ρ) bounded for ρ → 0 and ρ →∞. (9)

It has been shown by the author [1] that there exists an infinite discrete set of eigensolutions to
the problem (8) and (9). To enumerate these eigensolutions one needs positiveand negative
integer radial quantum numbersn. The eigenvalues to the problem (8) and (9) are

µnκ(ε) = εζ−1(|n| + γκ ±Nnκ) (n = 0,±1,±2, . . .) (10)

where

γκ =
√
κ2 − ζ 2 (11)

and

Nnκ =
√
(|n| + γκ)2 + ζ 2 =

√
|n|2 + 2|n|γκ + κ2 (12)
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is a so-called ‘apparent principal quantum number’. Suitably normalized the upper and the
lower components of the corresponding eigenfunctions are

Snκ(ε, ρ) =
√

α(|n| + 2γκ)|n|!
2εNnκ(Nnκ ∓ κ)0(|n| + 2γκ)

ργκe−ρ/2
[
L
(2γκ )
|n|−1(ρ) +

κ ∓Nnκ
|n| + 2γκ

L
(2γκ )
|n| (ρ)

]
(13)

Tnκ(ε, ρ) =
√

αε(|n| + 2γκ)|n|!
2Nnκ(Nnκ ∓ κ)0(|n| + 2γκ)

ργκe−ρ/2
[
L
(2γκ )
|n|−1(ρ)−

κ ∓Nnκ
|n| + 2γκ

L
(2γκ )
|n| (ρ)

]
(14)

respectively. In equations (13) and (14)L(α)n (ρ) denotes the generalized Laguerre polynomials
defined as in [7]. (Please notice that with that definition one hasL

(α)
−1(ρ) ≡ 0, the fact of

importance in the casen = 0). The following convention is adopted in equations (10), (13)
and (14): the upper signs are to be chosen forn > 0 and the lower signs forn < 0. Forn = 0
one chooses the upper signs ifκ < 0 and the lower signs ifκ > 0. In other words, one chooses
the upper signs forn > n0(κ) and the lower signs forn < n0(κ), where

n0(κ) =
{

0 for κ < 0

1 for κ > 0.
(15)

The upper and the lower components of the Sturmians obey the followingtwogeneralized
orthonormality relations:∫ ∞

0
dρ

Z

ρ

[
µn′κ(ε) Snκ(ε, ρ) Sn′κ(ε, ρ)− µ−1

nκ (ε) Tnκ(ε, ρ) Tn′κ(ε, ρ)
] = δnn′ (16)

and
1

2α

∫ ∞
0

dρ
[
εSnκ(ε, ρ) Sn′κ(ε, ρ) + ε−1Tnκ(ε, ρ) Tn′κ(ε, ρ)

] = δnn′ . (17)

In [1, 3] we have used the properties of the generalized Laguerre polynomials to show that the
Dirac–Coulomb Sturmians are complete on the real positive semi-axis 0< ρ < ∞. It has
been shown that functions (13) and (14) satisfy the following closure relations:

Z

ρ ′

∞∑
n=−∞

(
Snκ(ε, ρ)

µ−1
nκ (ε) Tnκ(ε, ρ)

)(
µnκ(ε) Snκ(ε, ρ

′) −Tnκ(ε, ρ ′)
) = δ(ρ − ρ ′) 1

(0< ρ, ρ ′ <∞) (18)

and
1

2α

∞∑
n=−∞

(
Snκ(ε, ρ)

Tnκ(ε, ρ)

)(
εSnκ(ε, ρ

′) ε−1Tnκ(ε, ρ
′)
) = δ(ρ − ρ ′) 1

(0< ρ, ρ ′ <∞). (19)

In equations (18) and (19)1 denotes the unit 2× 2 matrix.

3. The radial Dirac–Coulomb Sturmians in theZ = 0 limit

In the limiting caseZ→ 0 from equations (11) and (12) one obtains

γκ
Z→0−→ |κ| (20)

Nnκ
Z→0−→ |n| + |κ| (21)
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while from equation (10) one deduces

µnκ(ε)
Z→0±−→

{
±∞ for n > n0(κ)

0 for n < n0(κ)
(22)

µ−1
nκ (ε)

Z→0±−→
{

0 for n > n0(κ)

∓∞ for n < n0(κ)
(23)

and

µnκ(ε) ζ
Z→0−→

{
2ε(n + |κ|) for n > n0(κ)

0 for n < n0(κ)
(24)

µ−1
nκ (ε) ζ

Z→0−→
{

0 for n > n0(κ)

−2ε−1(|n| + |κ|) for n < n0(κ).
(25)

The limiting forms of the radial Sturmians, derived from equations (13) and (14), are

Snκ(ε, ρ)
Z→0−→

√
α(|n| + 2|κ|)|n|!

2ε(|n| + |κ|)(|n| + |κ| ∓ κ)0(|n| + 2|κ|)

×ρ |κ|e−ρ/2
[
L
(2|κ|)
|n|−1(ρ) +

κ ∓ (|n| + |κ|)
|n| + 2|κ| L

(2|κ|)
|n| (ρ)

]
(26)

and

Tnκ(ε, ρ)
Z→0−→

√
αε(|n| + 2|κ|)|n|!

2(|n| + |κ|)(|n| + |κ| ∓ κ)0(|n| + 2|κ|)

×ρ |κ|e−ρ/2
[
L
(2|κ|)
|n|−1(ρ)−

κ ∓ (|n| + |κ|)
|n| + 2|κ| L

(2|κ|)
|n| (ρ)

]
. (27)

Since this should not lead to any misunderstanding, throughout the rest of the paper the limits
of the functionsSnκ(ε, ρ) andTnκ(ε, ρ) will be designated withSnκ(ε, ρ) andTnκ(ε, ρ), too.

In the next step we consider limits of the orthogonality and closure relations obeyed by
the Sturmians. In the limitZ→ 0 the relation (16) splits into two relations

2ε

α

∫ ∞
0

dρ
n + |κ|
ρ

Snκ(ε, ρ) Sn′κ(ε, ρ) = δnn′ (n, n′ > n0(κ)) (28)

and

2

αε

∫ ∞
0

dρ
|n| + |κ|
ρ

Tnκ(ε, ρ) Tn′κ(ε, ρ) = δnn′ (n, n′ < n0(κ)) (29)

while the relation (17) formally remains unchanged

1

2α

∫ ∞
0

dρ
[
εSnκ(ε, ρ) Sn′κ(ε, ρ) + ε−1Tnκ(ε, ρ) Tn′κ(ε, ρ)

] = δnn′ . (30)

The closure relation (18) is modified to

2ε

α

∞∑
n=n0(κ)

n + |κ|
ρ ′

(
Snκ(ε, ρ)

0

)(
Snκ(ε, ρ

′) 0
)

+
2

αε

n0(κ)−1∑
n=−∞

|n| + |κ|
ρ ′

(
0

Tnκ(ε, ρ)

)(
0 Tnκ(ε, ρ

′)
) = δ(ρ − ρ ′) 1

(0< ρ, ρ ′ <∞) (31)
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while the relation (19) formally does not undergo changes

1

2α

∞∑
n=−∞

(
Snκ(ε, ρ)

Tnκ(ε, ρ)

)(
εSnκ(ε, ρ

′) ε−1Tnκ(ε, ρ
′)
) = δ(ρ − ρ ′) 1

(0< ρ, ρ ′ <∞). (32)

To proceed further, it is convenient to consider the casesn > n0(κ) andn < n0(κ)

separately. We begin with the casen > n0(κ). Then, from equations (8), (9), (24) and (25),
one obtains that in the limitZ→ 0 the radial Sturmians satisfy the system(
ε/2− 2ε(n + |κ|)/ρ −d/dρ + κ/ρ

d/dρ + κ/ρ −ε−1/2

)(
Snκ(ε, ρ)

Tnκ(ε, ρ)

)
= 0

(0< ρ <∞; n > n0(κ)) (33)

Snκ(ε, ρ) and Tnκ(ε, ρ) bounded for ρ → 0 and ρ →∞ (34)

hence, one deduces that(
d2

dρ2
− κ(κ + 1)

ρ2
+
n + |κ|
ρ
− 1

4

)
Snκ(ε, ρ) = 0 (n > n0(κ)) (35)

Tnκ(ε, ρ) = 2ε

(
d

dρ
+
κ

ρ

)
Snκ(ε, ρ) (n > n0(κ)). (36)

On utilizing the recurrence relations for the generalized Laguerre polynomials [7]

L
(α)
k (ρ) = L(α+1)

k (ρ)− L(α+1)
k−1 (ρ) (37)

ρL
(α+1)
k (ρ) = (k + α + 1)L(α)k (ρ)− (k + 1)L(α)k+1(ρ) (38)

(the former is useful forκ < 0, the latter forκ > 0), the functionSnκ(ε, ρ) may be expressed
in the following compact form:

Snκ(ε, ρ) = sgn(κ)

√
α(n + |κ| − l − 1)!

2ε(n + |κ|)(n + |κ| + l)! ρ
l+1e−ρ/2L(2l+1)

n+|κ|−l−1(ρ)

(n > n0(κ)) (39)

where

l = |κ + 1
2| − 1

2 =
{
−κ − 1 for κ < 0

κ for κ > 0.
(40)

It is evident from equation (39) that the functions{Snκ(ε, ρ)} possess the following symmetry
property:

Sn+1,l(ε, ρ) = −Sn,−l−1(ε, ρ) (n > n0(κ)). (41)

It is also an immediate consequence of the closure relation (31) that

2ε

α

∞∑
n=n0(κ)

n + |κ|
ρ ′

Snκ(ε, ρ) Snκ(ε, ρ
′) = δ(ρ − ρ ′). (42)

Next we turn to considering the casen < n0(κ). From equations (8), (9), (24) and (25)
one infers that in this case in the limitZ→ 0 the radial Sturmians are solutions of(

ε/2 −d/dρ + κ/ρ
d/dρ + κ/ρ −ε−1/2 + 2ε−1(|n| + |κ|)/ρ

)(
Snκ(ε, ρ)

Tnκ(ε, ρ)

)
= 0

(0< ρ, ρ ′ <∞; n < n0(κ)) (43)
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Snκ(ε, ρ) and Tnκ(ε, ρ) bounded for ρ → 0 and ρ →∞ (44)

hence (
d2

dρ2
− κ(κ − 1)

ρ2
+
|n| + |κ|
ρ

− 1

4

)
Tnκ(ε, ρ) = 0 (n < n0(κ)) (45)

and

Snκ(ε, ρ) = 2ε−1

(
d

dρ
− κ
ρ

)
Tnκ(ε, ρ) (n < n0(κ)). (46)

Application of the recurrence relations (37) and (38) to equation (27) yields the simplified
form of the lower-component Sturmian

Tnκ(ε, ρ) = sgn(−κ)
√

αε(|n| + |κ| − l′ − 1)!

2(|n| + |κ|)(|n| + |κ| + l′)! ρ
l′+1e−ρ/2L(2l

′+1)
|n|+|κ|−l′−1(ρ)

(n < n0(κ)) (47)

where

l′ = |κ − 1
2| − 1

2 =
{
l + 1 for κ < 0

l − 1 for κ > 0.
(48)

From the closure relation (31) one infers also that

2

αε

n0(κ)−1∑
n=−∞

|n| + |κ|
ρ ′

Tnκ(ε, ρ) Tnκ(ε, ρ
′) = δ(ρ − ρ ′). (49)

The closure relations (31) and (32) imply that any sufficiently regular two-component
function( F (r) G(r) )T (here and in the following the superscript T denotes a matrix transpose)
defined on 0< r <∞ may be expanded in either of the following two ways:(

F(r)

G(r)

)
=

∞∑
n=−∞

anκ(E)

(
Snκ(ε,2λr)
Tnκ(ε,2λr)

)
(50)

with

anκ(E) = λ

α

∫ ∞
0

dr
[
εSnκ(ε,2λr)F (r) + ε−1Tnκ(ε,2λr)G(r)

]
(51)

or(
F(r)

G(r)

)
=

∞∑
n=n0(κ)

bnκ(E)

(
Snκ(ε,2λr)

0

)
+
n0(κ)−1∑
n=−∞

bnκ(E)

(
0

Tnκ(ε,2λr)

)
(52)

with

bnκ(E) = 2ε

α

∫ ∞
0

dr
n + |κ|
r

Snκ(ε,2λr)F (r) (n > n0(κ)) (53)

bnκ(E) = 2

αε

∫ ∞
0

dr
|n| + |κ|
r

Tnκ(ε,2λr)G(r) (n < n0(κ)). (54)
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4. Series expansion of the radial Dirac Green function for|E| < mc2 in the
Dirac–Coulomb Sturmian basis

As the first example of usefulness of the Dirac–Coulomb Sturmians in theZ = 0 limit, we shall
derive a series expansion of the radial Dirac Green functionGκ(E, r, r

′) in the case|E| < mc2.
The functionGκ(E, r, r

′) is a 2× 2 matrix function

Gκ(E, r, r
′) =

(
G(11)
κ (E, r, r ′) G(12)

κ (E, r, r ′)

G(21)
κ (E, r, r ′) G(22)

κ (E, r, r ′)

)
(55)

defined as a solution to the inhomogeneous boundary-value problem(
mc2 − E ch̄(−d/dr + κ/r)

ch̄(d/dr + κ/r) −mc2 − E
)

Gκ(E, r, r
′) = δ(r − r ′) 1

(0< r, r ′ <∞; r ′ fixed; |E| < mc2) (56)

Gκ(E, r, r
′) bounded for r → 0 and r →∞. (57)

For notational brevity, it is convenient to make the variable transformation (6) and introduce
the Green functiongκ(ε, ρ, ρ ′) such that

gκ(ε, ρ, ρ
′) = Gκ(E, r, r

′). (58)

Obviously,gκ(ε, ρ, ρ ′) is a solution of(
ε/2 −d/dρ + κ/ρ

d/dρ + κ/ρ −ε−1/2

)
gκ(ε, ρ, ρ

′) = (ch̄)−1δ(ρ − ρ ′) 1

(0< ρ, ρ ′ <∞; ρ ′ fixed) (59)

gκ(ε, ρ, ρ ′) bounded for ρ → 0 and ρ →∞. (60)

The closed form of the functiongκ(ε, ρ, ρ ′) is known; it is

gκ(ε, ρ, ρ
′) = 2

πch̄ε
H(ρ ′ − ρ)

(
ı̂l (

1
2ρ)

εı̂l′(
1
2ρ)

)(
k̂l(

1
2ρ
′) −εk̂l′( 1

2ρ
′)
)

+
2

πch̄ε
H(ρ − ρ ′)

(
k̂l(

1
2ρ)

−εk̂l′( 1
2ρ)

)(
ı̂l (

1
2ρ
′) εı̂l′(

1
2ρ
′)
)

(61)

wherel andl′ have been defined by equations (40) and (48), respectively,ı̂l (x) andk̂l(x) are
the modified Riccati–Bessel functions related to the modified Bessel functions [7] through

ı̂l (x) =
√

1
2πx Il+ 1

2
(x) k̂l(x) =

√
1
2πx Kl+ 1

2
(x) (62)

andH(x) is the Heaviside unit step function. Notice that the functiongκ(ε, ρ, ρ ′) possesses
the symmetry property

gT
κ (ε, ρ

′, ρ) = gκ(ε, ρ, ρ
′). (63)

We seek the Sturmian expansion of the functiongκ(ε, ρ, ρ ′) in the form

gκ(ε, ρ, ρ
′) =

∞∑
n=−∞

(
Snκ(ε, ρ)

Tnκ(ε, ρ)

)
θT
nκ(ε, ρ

′) (64)
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where the expansion ‘coefficient’θT
nκ(ε, ρ

′) is a 1×2 matrix function ofρ ′. Substitution of the
expansion (64) into the differential equation (59), followed by application of equations (33)
and (43), leads to

2ε
∞∑

n=n0(κ)

n + |κ|
ρ

(
Snκ(ε, ρ)

0

)
θT
nκ(ε, ρ

′)

−2ε−1
n0(κ)−1∑
n=−∞

|n| + |κ|
ρ

(
0

Tnκ(ε, ρ)

)
θT
nκ(ε, ρ

′) = (ch̄)−1δ(ρ − ρ ′) 1. (65)

To find θT
nκ(ε, ρ

′), we multiply the above equation from the left by( Sn′κ(ε, ρ) 0 ) (with
n′ > n0(κ)) or by ( 0 Tn′κ(ε, ρ) ) (with n′ < n0(κ)) and integrate the results fromρ = 0 to
∞. By virtue of the orthogonality relations (28) and (29), this yields

θT
nκ(ε, ρ

′) = e−2
(
Snκ(ε, ρ

′) 0
)

(n > n0(κ)) (66)

and

θT
nκ(ε, ρ

′) = −e−2
(

0 Tnκ(ε, ρ
′)
)

(n < n0(κ)) (67)

hence

gκ(ε, ρ, ρ
′) = e−2

∞∑
n=n0(κ)

(
Snκ(ε, ρ)

Tnκ(ε, ρ)

)(
Snκ(ε, ρ

′) 0
)

− e−2
n0(κ)−1∑
n=−∞

(
Snκ(ε, ρ)

Tnκ(ε, ρ)

)(
0 Tnκ(ε, ρ

′)
)

= e−2


∞∑

n=n0(κ)

Snκ(ε, ρ) Snκ(ε, ρ
′) −

n0(κ)−1∑
n=−∞

Snκ(ε, ρ) Tnκ(ε, ρ
′)

∞∑
n=n0(κ)

Tnκ(ε, ρ) Snκ(ε, ρ
′) −

n0(κ)−1∑
n=−∞

Tnκ(ε, ρ) Tnκ(ε, ρ
′)

. (68)

The symmetry property (63) of the expansion (68) becomes evident after making use of the
relation

∞∑
n=n0(κ)

Snκ(ε, ρ) Tnκ(ε, ρ
′) +

n0(κ)−1∑
n=−∞

Snκ(ε, ρ) Tnκ(ε, ρ
′) = 0 (69)

following from either of the two off-diagonal elements of the completeness equation (32).
We conclude this section by considering the non-relativistic limit of the results obtained

above. Forc→∞ we haveTnκ(ε,2λr)→ 0, which implies

G(12)
κ (E, r, r ′)

c→∞−→ 0 G(21)
κ (E, r, r ′)

c→∞−→ 0 G(22)
κ (E, r, r ′)

c→∞−→ 0. (70)

Further, forn > n0(κ) from equation (39) we have

Snκ(ε,2λr)
c→∞−→

{−Snl(2λr) for κ < 0
Sn−1,l(2λr) for κ > 0

(71)

where

Snl(2λr) =
√

n!

λa0(n + l + 1)(n + 2l + 1)!
(2λr)l+1e−λrL(2l+1)

n (2λr) (n > 0) (72)
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with λ = limc→∞ λ anda0 = h̄2/me2 denoting the Bohr radius, is the non-relativistic (Z-
independent) radial Schrödinger–Coulomb Sturmian function. Hence and from equation (68),
we obtain

G(11)
κ (E, r, r ′)

c→∞−→ e−2
∞∑
n=0

Snl(2λr) Snl(2λr
′). (73)

The series on the right of equation (73) coincides with the Sturmian expansion of the non-
relativistic free-particle radial Green function [8]

Gl(E, r, r
′) = 4m

πh̄2λ

[
ı̂l (λr) k̂l(λr

′)H(r ′ − r) + k̂l(λr) ı̂l(λr
′)H(r − r ′)] (74)

with

E = lim
c→∞(E −mc

2) = − h̄
2λ2

2m
. (75)

5. Series expansions of the Dirac plane wave in the Dirac–Coulomb Sturmian bases

As the second example of the utility of the Dirac–Coulomb Sturmians in theZ = 0 limit, we
shall construct two Sturmian expansions of the Dirac plane wave.

The free-particle time-independent Dirac equation[−ich̄α ·∇ + βmc2 − E]9(E, r) = 0 (76)

with 9(E, r) bounded,

|E | > mc2 (77)

and the 4× 4 Dirac matricesα andβ defined in terms of the 2× 2 Pauli (σ), unit (1) and null
(0) matrices as

α =
(

0 σ

σ 0

)
β =

(
1 0
0 −1

)
(78)

possesses a particular solution

9k(E, r) =
√
E +mc2

2E

 χ

ch̄k · σ
E +mc2

χ

 exp(ik · r) (79)

normalized to the unit probability density and describing a plane wave propagating in the
directionk/k, wherek is the wavevector of modulus

|k| ≡ k =
√
(E −mc2)(E +mc2)

ch̄
(80)

whileχ is a normalized (χ†χ = 1) two-component spinor describing electron spin orientation
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in its rest frame. It is our goal to find coefficients in the expansions

9k(E, r) =
∞∑

κ=−∞
(κ 6=0)

|κ|− 1
2∑

mj=−(|κ|− 1
2 )

∞∑
n=−∞

Ak,nκmj (E, E)
1

r

(
Snκ(ε,2λr)�κmj (r/r)

iTnκ(ε,2λr)�−κmj (r/r)

)
(81)

9k(E, r) =
∞∑

κ=−∞
(κ 6=0)

|κ|− 1
2∑

mj=−(|κ|− 1
2 )

∞∑
n=n0(κ)

Bk,nκmj (E, E)
1

r

(
Snκ(ε,2λr)�κmj (r/r)

0

)

+
∞∑

κ=−∞
(κ 6=0)

|κ|− 1
2∑

mj=−(|κ|− 1
2 )

n0(κ)−1∑
n=−∞

Bk,nκmj (E, E)
1

r

(
0

iTnκ(ε,2λr)�−κmj (r/r)

)
(82)

where�±κmj (r/r) are spherical spinors. The Dirac–Coulomb Sturmian expansions (81) and
(82) of the Dirac plane wave9k(E, r) are counterparts of the well known non-relativistic
Schr̈odinger–Coulomb Sturmian expansion of the Helmholtz plane wave [5, 6].

The way we proceed is analogous to that adopted in the non-relativistic theory [5]. We
expand the plane wave (79) in spherical waves [9]

9k(E, r) =
√
E +mc2

2E

∞∑
κ=−∞
(κ 6=0)

|κ|− 1
2∑

mj=−(|κ|− 1
2 )

4π i l

k
[�†

κmj
(k/k)χ ]

1

r

(
Pκ(E, r)�κmj (r/r)

iQκ(E, r)�−κmj (r/r)

)
(83)

(the dagger denotes the matrix Hermitian conjugation), where the radial functionsPκ(E, r)
andQκ(E, r) obey a system of coupled first-order equations(

mc2 − E ch̄(−d/dr + κ/r)
ch̄(d/dr + κ/r) −mc2 − E

)(
Pκ(E, r)
Qκ(E, r)

)
= 0 (84)

augmented by the constraints

Pκ(E, r) and Qκ(E, r) bounded for r → 0 and r →∞. (85)

Equation (84) may be rewritten in the form

Pκ(E, r) = ε−1k−1

(
− d

dr
+
κ

r

)
Qκ(E, r) (86)

Qκ(E, r) = εk−1

(
d

dr
+
κ

r

)
Pκ(E, r) (87)

where

ε = sgn(E)
√
E −mc2

E +mc2
. (88)

From equations (86) and (87) one finds thatPκ(E, r) andQκ(E, r) are solutions of the Riccati–
Bessel equations(

d2

dr2
− κ(κ + 1)

r2
+ k2

)
Pκ(E, r) = 0 (89)(

d2

dr2
− κ(κ − 1)

r2
+ k2

)
Qκ(E, r) = 0. (90)
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Hence, with the normalization

Pκ(E, r)
r→∞−→ sin

(
kr − 1

2πl
)

(91)

one obtains (
Pκ(E, r)
Qκ(E, r)

)
=
(

̂l(kr)

sgn(κ)ε̂l′(kr)

)
(92)

wherêl(x) is the regular Riccati–Bessel function related to the Bessel function [7] through

̂l(x) =
√

1
2πx Jl+ 1

2
(x) (93)

and the quantum numbersl andl′ have been defined by equations (40) and (48), respectively.
Consider now the radial expansion(

Pκ(E, r)
Qκ(E, r)

)
=

∞∑
n=−∞

anκ(E, E)
(
Snκ(ε,2λr)
Tnκ(ε,2λr)

)
. (94)

In accord with equations (50) and (51), the expansion coefficients{anκ(E, E)} are given by

anκ(E, E) = λ

α

∫ ∞
0

dr
[
εSnκ(ε,2λr)Pκ(E, r) + ε−1Tnκ(ε,2λr)Qκ(E, r)

]
. (95)

It is clear that once the coefficients{anκ(E, E)} have been found, the coefficients
{Ak,nκmj (E, E)} are also known since equations (81), (83) and (94) imply

Ak,nκmj (E, E) =
√
E +mc2

2E
4π i l

k

[
�†
κmj
(k/k)χ

]
anκ(E, E). (96)

To evaluate the coefficients{anκ(E, E)} we simplify the integral on the right of equation (95)
by utilizing the properties of the Sturmians and the functionsPκ(E, r) andQκ(E, r). At first
let us discuss the case whenn > n0(κ). Then, employing equations (36) and (87), one finds∫ ∞

0
dr Tnκ(ε,2λr)Qκ(E, r)

= εk−1ελ−1
∫ ∞

0
dr

[(
d

dr
+
κ

r

)
Snκ(ε,2λr)

][(
d

dr
+
κ

r

)
Pκ(E, r)

]
(n > n0(κ)) (97)

which, after integration by parts transferring the operator acting onSnκ(ε,2λr) to the right and
after making use of equation (89), is transformed into∫ ∞

0
dr Tnκ(ε,2λr)Qκ(E, r) = εkελ−1

∫ ∞
0

dr Snκ(ε,2λr)Pκ(E, r) (n > n0(κ)).

(98)

Substitution of the result (98) into equation (95) yields

anκ(E, E) = εk + ελ

α

∫ ∞
0

dr Snκ(ε,2λr)Pκ(E, r) (n > n0(κ)). (99)

Consider next the casen < n0(κ). This time it is convenient to transform the first part of
the integral in equation (95). Upon utilizing equations (46) and (86), integrating by parts and
using equation (90), we obtain∫ ∞

0
dr Snκ(ε,2λr)Pκ(ε, r) = −ε−1kε−1λ−1

∫ ∞
0

dr Tnκ(ε,2λr)Qκ(E, r) (n < n0(κ)).

(100)
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Employing the result (100) in equation (95) and making use of the identity

ε−1k − ε−1λ = εk + ελ (101)

yields

anκ(E, E) = −εk + ελ

α

∫ ∞
0

dr Tnκ(ε,2λr)Qκ(E, r) (n < n0(κ)). (102)

It remains to evaluate the integrals in equations (99) and (102). Upon utilizing equations (39),
(47) and (92), one has

anκ(E, E) = sgn(κ)(εk + ελ)

√
(n + |κ| − l − 1)!

2αε(n + |κ|)(n + |κ| + l)! In+|κ|−l−1,l(k, λ)

(n > n0(κ)) (103)

and

anκ(E, E) = ε(εk + ελ)

√
ε(|n| + |κ| − l′ − 1)!

2α(|n| + |κ|)(|n| + |κ| + l′)! I|n|+|κ|−l′−1,l′(k, λ)

(n < n0(κ)) (104)

where

Inl(k, λ) =
∫ ∞

0
dr (2λr)l+1e−λrL(2l+1)

n (2λr) ̂l(kr). (105)

The integralInl(k, λ)was evaluated by Podolsky and Pauling [10] (cf also [5]) who considered
the Schr̈odinger–Coulomb problem in the momentum representation. They obtained

Inl(k, λ) = 22l+2l!(n + l + 1)
kl+1λl+2

(k2 + λ2)l+2
C(l+1)
n

(
k2 − λ2

k2 + λ2

)
(106)

whereC(α)n (x) is the Gegenbauer polynomial [7]. With this result, we finally arrive at

anκ(E, E) = sgn(κ) 22l+3/2l!

√
(n + |κ|)(n + |κ| − l − 1)!

αε(n + |κ| + l)!

×(εk + ελ)
kl+1λl+2

(k2 + λ2)l+2
C
(l+1)
n+|κ|−l−1

(
k2 − λ2

k2 + λ2

)
(n > n0(κ)) (107)

and

anκ(E, E) = 22l′+3/2l′!

√
ε(|n| + |κ|)(|n| + |κ| − l′ − 1)!

α(|n| + |κ| + l′)!

×ε(εk + ελ)
kl
′+1λl

′+2

(k2 + λ2)l
′+2
C
(l′+1)
|n|+|κ|−l′−1

(
k2 − λ2

k2 + λ2

)
(n < n0(κ)). (108)

Equations (96), (107) and (108) solve the problem of constructing the Sturmian expansion
(81).

It is interesting to consider the non-relativistic limit of the expansion (94). Denoting
λ = limc→∞ λ andk = limc→∞ k, equations (107) and (108) yield

anκ(E, E)
c→∞−→ sgn(κ) 22l+1l!

√
λa0(n + |κ|)(n + |κ| − l − 1)!

(n + |κ| + l)!

×
(

k λ

k2 + λ2

)l+1

C
(l+1)
n+|κ|−l−1

(
k2 − λ2

k2 + λ2

)
(n > n0(κ)) (109)
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and

anκ(E, E)
c→∞−→ 0 (n < n0(κ)). (110)

On combining the non-relativistic limits of equations (39), (92) and (94) with equations (109)
and (110), one arrives at the well known expansion of the Riccati–Bessel function in the
Laguerre polynomials basis [11, 12]

̂l(kr) =
∞∑
n=0

22l+1l!n!

(n + 2l + 1)!

(
k λ

k2 + λ2

)l+1

C(l+1)
n

(
k2 − λ2

k2 + λ2

)
(2λr)l+1e−λrL(2l+1)

n (2λr). (111)

Consider next the radial expansion(
Pκ(E, r)
Qκ(E, r)

)
=

∞∑
n=n0(κ)

bnκ(E, E)
(
Snκ(ε,2λr)

0

)
+
n0(κ)−1∑
n=−∞

bnκ(E, E)
(

0
Tnκ(ε,2λr)

)
.

(112)

Knowledge of the coefficients{bnκ(E, E)} implies knowledge of the coefficients
{Bk,nκmj (E, E)}, since equations (82), (83) and (112) give

Bk,nκmj (E, E) =
√
E +mc2

2E
4π i l

k

[
�†
κmj
(k/k)χ

]
bnκ(E, E). (113)

Based on equations (52)–(54) we find that the expansion coefficients{bnκ(E, E)} are given by

bnκ(E, E) = 2ε

α

∫ ∞
0

dr
n + |κ|
r

Snκ(ε,2λr)Pκ(E, r) (n > n0(κ)) (114)

bnκ(E, E) = 2

αε

∫ ∞
0

dr
|n| + |κ|
r

Tnκ(ε,2λr)Qκ(E, r) (n < n0(κ)). (115)

It appears that the integrals in equations (114) and (115) may be expressed in terms of the
integrals occurring in equations (99) and (102), respectively. To show this, let us premultiply
equation (35) byPκ(E, r), equation (45) byQκ(E, r) and integrate the results fromr = 0 to
∞. This yields∫ ∞

0
dr Pκ(E, r)

(
d2

dr2
− κ(κ + 1)

r2
+

2λ(n + |κ|)
r

− λ2

)
Snκ(ε,2λr) = 0

(n > n0(κ)) (116)

and∫ ∞
0

dr Qκ(E, r)
(

d2

dr2
− κ(κ − 1)

r2
+

2λ(|n| + |κ|)
r

− λ2

)
Tnκ(ε,2λr) = 0

(n < n0(κ)). (117)

Integrating by parts twice and transferring in this way the action of the operators in parentheses
to the left, after utilizing the differential equations (89) and (90) we obtain∫ ∞

0
dr

(
−k2 − λ2 +

2λ(n + |κ|)
r

)
Pκ(E, r) Snκ(ε,2λr) = 0 (n > n0(κ)) (118)

and∫ ∞
0

dr

(
−k2 − λ2 +

2λ(|n| + |κ|)
r

)
Qκ(E, r) Tnκ(ε,2λr) = 0 (n < n0(κ)) (119)
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hence, it follows that∫ ∞
0

dr
n + |κ|
r

Snκ(ε,2λr)Pκ(E, r) = k2 + λ2

2λ

∫ ∞
0

dr Snκ(ε,2λr)Pκ(E, r)

(n > n0(κ)) (120)

and∫ ∞
0

dr
|n| + |κ|
r

Tnκ(ε,2λr)Qκ(E, r) = k2 + λ2

2λ

∫ ∞
0

dr Tnκ(ε,2λr)Qκ(E, r)

(n < n0(κ)). (121)

Consequently, from equations (99), (102), (114), (115), (120) and (121) we deduce the
following relationships between the coefficients{bnκ(E, E)} and{anκ(E, E)}:

bnκ(E, E) = ε(k2 + λ2)

λ(εk + ελ)
anκ(E, E) (n > n0(κ)) (122)

bnκ(E, E) = − k2 + λ2

ελ(εk + ελ)
anκ(E, E) (n < n0(κ)). (123)

Inserting here the results (107) and (108), we conclude that

bnκ(E, E) = sgn(κ) 22l+3/2l!

√
ε(n + |κ|)(n + |κ| − l − 1)!

α(n + |κ| + l)!

×
(

kλ

k2 + λ2

)l+1

C
(l+1)
n+|κ|−l−1

(
k2 − λ2

k2 + λ2

)
(n > n0(κ)) (124)

and

bnκ(E, E) = −22l′+3/2l′!

√
(|n| + |κ|)(|n| + |κ| − l′ − 1)!

αε(|n| + |κ| + l′)!

×ε
(

kλ

k2 + λ2

)l′+1

C
(l′+1)
|n|+|κ|−l′−1

(
k2 − λ2

k2 + λ2

)
(n < n0(κ)). (125)

Equations (113), (124) and (125) constitute the solution to the problem of constructing the
Sturmian expansion (82). Since

bnκ(E, E)
c→∞−→ anκ(E, E) (n > n0(κ)) (126)

in the non-relativistic limit the upper component of the radial expansion (112) brings on the
Laguerre expansion (111).

6. Conclusions

In this work we have investigated properties of the Dirac–Coulomb Sturmians in theZ = 0
limit. To illustrate the utility of the results obtained, a series expansion of the Dirac Green
function for|E| < mc2 and two series expansions of the Dirac plane wave have been derived.
The latter expansions are relativistic counterparts of the Schrödinger–Coulomb Sturmian
expansion of the Helmholtz plane wave which in recent years found applications in non-
relativistic quantum physics [5, 6].

It is worth emphasizing that the results of section 5 open the way to a presentation of
the relativistic generalization of theJ -matrix theory of scattering on short-range potentials
[11, 13, 14]. To consider the relativisticJ -matrix theory of scattering on potentials vanishing
like the Coulomb potential [11] one needs a Dirac–Coulomb Sturmian expansion of the Dirac–
Coulomb wave. Currently we are working on deriving such an expansion.
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